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Abstract

This paper describes a cascading multimodal pipeline for
high-resolution biodiversity mapping across Europe, inte-
grating species distribution modeling, biodiversity indica-
tors, and habitat classification. The proposed pipeline first
predicts species compositions using a deep-SDM, a multi-
modal model trained on remote sensing, climate time series,
and species occurrence data at 50×50m resolution. These
predictions are then used to generate biodiversity indicator
maps and classify habitats with Pl@ntBERT, a transformer-
based LLM designed for species-to-habitat mapping. With
this approach, continental-scale species distribution maps,
biodiversity indicator maps, and habitat maps are pro-
duced, providing fine-grained ecological insights. Unlike
traditional methods, this framework enables joint modeling
of interspecies dependencies, bias-aware training with het-
erogeneous presence-absence data, and large-scale infer-
ence from multi-source remote sensing inputs.

1. Introduction
Mapping biodiversity at high spatial resolution is essential
for monitoring ecosystem health, assessing species distri-
butions, and guiding conservation policies [24, 27, 44]. Ef-
fective biodiversity mapping enables the early detection of
habitat loss, ecosystem degradation, and climate-induced
changes in species ranges, providing crucial information for
ecological research and decision-making [3, 40, 43].

However, generating such maps at a continental scale
with fine spatial detail remains a significant challenge due
to the limited availability of structured in situ data (i.e., data
collected directly in the field), spatial biases in species ob-
servations, and the complex relationships between species
and environmental factors [14, 18, 37].

A standard approach to tackle these challenges is inte-
grating publicly available species occurrence data, ecolog-
ical surveys, and remote sensing datasets. Citizen science
platforms such as GBIF, Pl@ntNet, and iNaturalist provide
large-scale species presence records [4, 12], while compre-
hensive biological surveys like EVA offer detailed vegeta-
tion data, including species composition and habitat charac-
teristics. Additionally, remote sensing data from satellites
such as Sentinel and Landsat enable large-scale biodiver-
sity assessments by capturing environmental variables (e.g.,
precipitation, temperature, and soil) [32] at high spatial and
temporal resolutions. To convert these sources to biodiver-
sity maps, Species Distribution Models (SDMs) are widely
used [23]. They predict species occurrence by analyzing
the relationship between observed records and environmen-
tal conditions. Traditional approaches, such as MAXENT
[45] and Random Forest [49] models, rely on statistical cor-
relations but face challenges (e.g., spatial biases, low reso-
lution, and an inability to model species interactions). Re-
cent advances in deep learning-based SDMs (deep-SDMs)
overcome these limitations by integrating multi-source data
and capturing complex ecological dependencies, resulting
in more accurate and scalable biodiversity predictions [15].

This CVPR Workshop paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

2349



This work introduces a cascading multimodal pipeline
that integrates SDM and Habitat Distribution Modeling
(HDM) to generate high-resolution European biodiversity
maps. Our approach leverages a deep-SDM, a multimodal
model trained on remote sensing (Sentinel-2, Landsat), cli-
mate time series, and in situ species observations to pre-
dict species compositions at a 50×50m resolution. These
predictions form the foundation for computing biodiver-
sity indicator maps, capturing key ecological metrics. Fi-
nally, we apply Pl@ntBERT [35], a transformer-based
species-to-habitat classifier, to infer habitat types based
on species assemblages, improving habitat mapping be-
yond traditional remote sensing-based approaches. Un-
like conventional SDMs, which treat species independently
and rely on handcrafted environmental features, our deep-
SDM models interspecies dependencies, mitigates spatial
biases, and enables large-scale inference using heteroge-
neous presence-absence data. By incorporating HDM, our
method extends beyond species distributions to produce de-
tailed habitat maps, providing a more comprehensive view
of ecosystem dynamics. This framework offers a scalable
and fine-grained solution for biodiversity monitoring, deliv-
ering high-resolution species distribution, biodiversity indi-
cators, and habitat maps at a continental scale.

2. Related Work
Accurate biodiversity and habitat mapping have tradition-
ally relied on habitat suitability models [23] or direct classi-
fication from remote sensing data [1]. However, these meth-
ods are often constrained by limited spatial resolution [19],
outdated reference datasets, and the inability to model in-
terspecies relationships. Some rare studies combine deep
learning, citizen science data, and remote sensing to track
plant species changes [22]. Nevertheless, they are usually
geographically restricted to a country.

Since mapping requires models that can predict species
distributions and classify habitats. Traditional SDMs esti-
mate species occurrence probabilities using environmental
variables, while HDMs focus on habitat classification by an-
alyzing species composition. This section summarizes key
facts about SDMs, deep-SDMs, and HDMs, highlighting
their strengths, limitations, and relevance to our approach.

Species distribution models (SDMs) predict where
species are likely to occur by analyzing relationships be-
tween species observations and environmental conditions.
Traditional SDMs approaches, i.e., MAXENT and Random
Forests, rely on statistical correlations but face limitations,
including spatial biases, low resolution, and the inability to
model interactions between species [7, 46]. These weak-
nesses limit their effectiveness, especially when working
with large-scale and complex ecosystems. To overcome
these challenges, deep-SDMs integrate remote sensing, cli-
mate data, and species occurrences to improve prediction

accuracy [5, 14, 17, 47, 51]. Unlike traditional SDMs,
deep-SDMs can learn complex spatial patterns and ecolog-
ical relationships using CNNs or transformers. This en-
ables higher-resolution predictions at a large scale, making
species distribution modeling more precise and scalable.

Habitat distribution models (HDMs) traditionally rely
on expert systems [41] and machine learning [26]. Expert
systems, though widely used [53], often overfit, making
classification sensitive to minor plot variations, and some-
times require external criteria beyond species composition
[13]. Machine learning models (i.e., NNs) [34], cap-
ture complex species composition patterns [8] but treat all
species as equally different, failing to model ecological in-
terdependencies [42]. While classical approaches are inter-
pretable, they struggle with high-dimensional data. Deep
learning, particularly transformers [55], has shown promise
in biology, e.g., protein structure prediction [31], but re-
mains underexplored in vegetation classification. Their
ability to model global dependencies makes them a promis-
ing alternative for habitat classification.

3. Methodology
Dataset. To construct the maps, we use GeoPlant [47],
a new European-scale dataset (see Fig. 1) designed for high-
resolution species distribution modeling. GeoPlant cov-
ers over 11,000 plant species, i.e., most of the European
flora, and is based on 5 million opportunistic Presence-
Only (PO) records from GBIF and 90,000 exhaustive
Presence-Absence (PA) surveys from the European Vegeta-
tion Archive (EVA). Besides, for each plant species obser-
vations, Sentinel-2 RGB and NIR satellite images with 10m
resolution, a 20-year time series of climatic variables (i.e.,
precipitation and mean, min, and max month temperature),
and satellite time series from the Landsat program (i.e., R,
G, B, NIR, and SWIR1+2) are provided. Coordinates were
not used as we want to reflect habitat suitability (i.e., learn
a relationship between environment and occurrences) [11].
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Figure 1. Geo spatial scale of the dataset (from [47]). The 5M
PO occurrences (9,709 species) span all of Europe, but the 90K
PA surveys (5,016 species) are primarily in France and Denmark.

2350



The provided PO and PA data were aggregated into a
50×50m spatial grid, consistent with the resolution used
during inference. This aggregation combines both data
types into a single site occupancy dataset, where each grid
cell contains a 1 or 0 per species, representing presence or
absence. This setup allows using a Binary Cross-Entropy
loss function, which is better suited for presence-absence
probability estimation than Categorical Cross-Entropy. Ad-
ditionally, a target group background approach [46] was ap-
plied to partially correct sampling bias [2]. To achieve this,
training is restricted to grid cells containing at least one
recorded species, ensuring that pseudo-absence points are
sampled only from locations where other species have been
observed. This method helps compensate for the lack of ex-
plicit absence data, improving the ecological relevance of
background points.

Species Distribution Modeling. Our approach is based
on deep multi-modal models, which have been shown to
outperform classical SDMs [28–30]. The mapping process
consists of two main phases: (i) training a deep-SDM us-
ing in situ observations combined with spatialized environ-
mental and remote sensing data and (ii) inferring the trained
model to predict species distributions across Europe.

We use a multi-modal ensemble approach (see Fig. 2),
building on previous work [6, 33, 48], based on a modified
ResNet-6 architecture with three separate branches for dif-
ferent input data types: (i) Sentinel-2 RGB+NIR imagery
(128×128 patches at 10m resolution), (ii) Climate time se-
ries encoded as three-dimensional data cubes (year, month,
and variables such as precipitation and temperature), and
(iii) Landsat remote sensing time series, structured similarly
with spectral bands (R, G, B, NIR, and SWIR1+2). Each in-
put modality is encoded by a dedicated CNN encoder with
six residual blocks, a design choice that improves perfor-
mance over larger off-the-shelf architectures [47]. The ex-
tracted embeddings are concatenated and passed through a
fully connected classifier which computes species presence
probabilities using one fully connected layer with a sigmoid
activation function. The model is trained using Stochas-
tic Gradient Descent (SGD) with binary cross-entropy loss.
The training code is available on GeoPlant GitHub.

Biodiversity Indicator Calculation. The biodiversity in-
dicators are extracted from the species assemblages pre-
dicted by the SDM at a 50×50m resolution across Europe.
These indicators summarize ecological properties such as
species richness and the presence of specific taxonomic or
functional groups, providing valuable insights into biodi-
versity patterns. To derive these assemblages, the species
probabilities predicted by the SDM are thresholded using a
conformal prediction approach [21]. This method ensures
a low probability of omitting truly present species, even if
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Figure 2. Selected SDM architecture (from [47]). This multi-
modal ensemble model processes each modality (i.e., satellite im-
ages, climatic cubes, and Landsat cubes) through a lightweight 6-
layer residual encoder (i.e., ResNet-6). The embeddings are then
concatenated and passed to a final classification layer.

it results in some false positives. This conservation-focused
strategy prioritizes minimizing omission errors and reduc-
ing the risk of underestimating species distributions, which
is critical for biodiversity assessments.

We define seven biodiversity indicators from the pre-
dicted species assemblages to assess ecosystems’ conser-
vation status. These indicators capture key ecological and
regulatory aspects, e.g.,
• Species richness: number of species.
• EU directive: number of species from the list provided

by the EU Habitat directive.
• Threatened species: number of IUCN Red List species.
• Most threatened: IUCN threatened species status1.
• Tree species: number of species from the lifeform

“woody” of the Plan Of the World Online database.
• Invasive species: number of species from the CABI list.
• Specialist species: number of species estimated to be

present with a very low probability of presence elsewhere.
Consequently, any indicator nS(x) relying on a number

of present species among |S| species of a particular type,
can be modelled as a statistical variable following a Poisson
binomial distribution (i.e., a sum of independent Bernoulli
trials that are not necessarily identically distributed). Thus,
the mean of nS(x) can be estimated as

µS(x) =
∑
i∈S

p(yi = 1|x), (1)

where S is the set of species of interest (e.g., endangered
species) and x is a particular point of the map (i.e., a cell of
50× 50m). The variance of nS(x) can be computed as

σS(x)
2 =

∑
i∈S

p(yi = 1|x) · (1− p(yi = 1|x)), (2)

1In the case of missing IUCN status, they were inferred using an auto-
mated method [56] also based on neural networks.
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from which we can derive a confidence interval for each
point of the map, e.g., through the 2-sigma rule:

δS(x) = 2σS(x). (3)

For an indicator based on |S| = 10 species with prob-
abilities p(y1 = 1|x) = 0.9, p(y2 = 1|x) = 0.8, p(y3 =
1|x) = 0.1, and p(yi = 1|x) = 0 for i ∈ [4, 10], we obtain
µS(x) = 1.8 and δS(x) = 1.1, giving

nS(x) = 1.8± 1.1. (4)

Thus, we can build a confidence interval map for almost
all indicators (using δS(x) as the value for each point). Only
the IUCN status of the most threatened species does not fol-
low this pattern. For this one, we want to estimate the prob-
ability that at least one species of a particular IUCN status
is present. If, for instance, we consider the set S = EN of
species with status ENDANGERED, the probability that at
least one of them is present is equal to

p(nEN (x) > 1|x) = 1−
∏

i∈EN

(1− p(yi = 1|x)). (5)

If we have |EN | = 10 species and p(y1 = 1|x) = 0.9,
p(y2 = 1|x) = 0.8, p(y3 = 1|x) = 0.1 and p(yi = 1|x) =
0 for i ∈ [4, 10], then the probability that at least one EN-
DANGERED species is present is 98.2%.

Habitat Identification. Unlike traditional approaches
that train models on satellite imagery labeled with EUNIS
habitat types2 [52], we infer habitats from the species as-
semblages predicted by the deep-SDM. Direct habitat clas-
sification from remote sensing is limited by the scarcity and
outdated nature of labeled datasets, as most available EU-
NIS labels come from EVA surveys with a mean collection
year of 1992. Many labeled sites have undergone signifi-
cant ecological changes due to land-use transformation and
climate change, making direct mapping unreliable. We fol-
low the latest version of the EUNIS classification [10] and
focus on levels 1, 2, and 3, the last being the most detailed.

Instead, since the primary value of EVA lies in its plant
species assemblage data, we take a different approach:
training a supervised model to predict EUNIS habitat types
based on species composition. This method is less affected
by temporal shifts in habitat labels because species assem-
blages remain a strong predictor of habitat type, even when
direct habitat labels become outdated [34]. If the deep-
SDM accurately predicts species assemblages at a given
site, habitat types can be inferred with high confidence.

2The EUNIS habitat classification [39] is a hierarchical system for the
categorization of natural and semi-natural habitats in Europe developed to
support biodiversity management, conservation, and sustainable use.
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Figure 3. Pl@ntBERT HDM (from [35]) processes the input (list
of species predicted by the deep-SDM) through multiple encoder
layers, with the [CLS] token representation passed to a classifier
to predict the most likely habitat type.

To implement this approach, we use Pl@ntBERT, a
Python-based framework for training, sharing, and evalu-
ating species-to-habitat classification models. Pl@ntBERT
leverages large language models (LLMs), which have
demonstrated strong performance in modeling plant species
relationships [36]. It is built upon BERT, originally de-
signed for natural language understanding [16], but adapted
to capture latent dependencies between plant species in dif-
ferent ecosystems [38]. The model is trained in two stages:

Species-to-Species prediction: Given a predicted species
assemblage, Pl@ntBERT learns to recover missing species
by training on incomplete species lists. This step refines its
understanding of species co-occurrence patterns [25].

Species-to-Habitat Classification: Fine-tuned on species
assemblages from the deep-SDM, the model predicts the
most probable EUNIS habitat type based on a sorted list
of species by estimated spatial coverage (see Fig. 3).

Pl@ntBERT provides an efficient and scalable solution
for habitat classification, leveraging the predictive power of
species assemblages rather than relying on direct but poten-
tially outdated habitat labels. The source code for training
and inference is available on Pl@ntBERT GitHub.
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Figure 4. Example species distribution maps for two selected species occurring in France and Greece at different zoom levels. These maps
are produced by the deep-SDM all over Europe for over 5,500 plant species at a 50×50m resolution.

4. Inference Details and Results
Species Distribution Maps. The trained SDM was used
to generate high-resolution species distribution maps across
Europe (see Fig. 4). To ensure scalability, the study area
was divided into 25×25km meta-tiles, each processed inde-
pendently. Within each tile, species predictions were made
at 50×50m grid, totaling 5.5 billion cells. If a cell’s center
fell in water, it was moved to the nearest terrestrial point.

Inference was done for the year 2021, using environmen-
tal data averaged between March 21 and December 1, 2021.
Unlike in training, where data cubes were extracted based
on observation dates (hence capturing seasonal or interan-
nual variability), inference used a fixed reference period. At
each inference point, the model predicted presence prob-
abilities for 11,255 species, which were then thresholded
to retain only likely present species, significantly reducing
storage requirements. The threshold was optimized on the
validation set to maximize the F-score.

Maps were generated just for 5,558 out of 11,255
species. This does not necessarily indicate species absence
but rather that their predicted probability remained below
the confidence threshold. On average, a species was pre-
dicted in 132.8 million grid cells, covering 332,000 km²
(2.4% of Europe). The most widespread species, Agrostis
capillaris L., appeared in 3.23 billion grid cells (58.6%).

To evaluate model performance, a spatial block hold-out
split (10×10km grid) was used to mitigate spatial autocor-
relation and assess generalization [50]. This approach was
chosen as a realistic test of spatial interpolation based on
species occurrence distribution. Each input modality was
also evaluated separately in order to demonstrate their own

predictive power, with Landsat data resulting in the highest
value. See Tab. 1 for detailed evaluation.

The multi-modal model achieves a high AUC score [20]
of 0.931, indicating strong performance in ranking true
presence sites higher than true absence sites. This suggests
that the predicted species distribution maps closely align
with actual species occurrences. However, the F-score [54],
which requires the model to predict the exact species assem-
blage for each test plot, is relatively low at 0.338.

A major limitation arises from the scale mismatch
between the test vegetation plots and the predicted grid
cells. The targeted resolution is 50×50m (2,500m2),
whereas test plots average 100m2, meaning they contain
significantly fewer species. As a result, many species
predicted by the model may be considered false positives
(i.e., are over-predicted) at the test plot scale, even if they
are present at the full 2,500m2 resolution.

Note: The full workflow required approximately 30,000
GPU hours on Nvidia A100 GPUs, producing 15TB of data.

Table 1. Evaluation of the SDM. The multimodal ensemble ap-
proach achieves a considerable performance improvement com-
pared to the single modality models in terms of all metrics.

Branch AUC F-score Recall@50 Recall@250

Sentinel 0.898 0.258 0.524 0.848
Bio 0.891 0.273 0.544 0.872
Landsat 0.920 0.312 0.595 0.873

All 0.931 0.338 0.639 0.908
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Figure 5. Example biodiversity indicator maps for two selected indicators occurring in Belgium and the Czech Republic at different zoom
levels. These maps are produced with the output of the deep-SDM all over Europe for seven biodiversity indicators at a 50×50m resolution.

A more precise evaluation of recall and precision would
require a complete ground-truth dataset at the 2,500m2

scale, which is impossible due to the extreme effort required
for manual surveys, or to predict species compositions at a
10×10m resolution, which approximately means multiply-
ing the number of grid cells by 25. Instead, we use Re-
call@K to evaluate the model’s ability to recover species
despite the resolution mismatch. Since the exact number of
species in a 50×50m cell is unknown, K=50 and K=250
serve as proxies for low- and high-diversity areas. The
model retrieves nearly two-thirds of species for K=50 and
over 90% for K=250, demonstrating strong recall despite
the spatial scale limitations. Favoring recall at the expense
of false positive ensures species are not missed (key in con-
servation), even if precision drops.

Biodiversity Indicators Maps. The workflow to create
the high-resolution indicator maps at the European scale
(see Fig. 5) is closely related to the one used for produc-
ing the species distribution maps based on the SDM. The
meta-tiles of size 25×25km are processed one by one (in
parallel), and within each tile, the indicators are computed
for each point of the 50×50m grid based on the species as-
semblage predicted by the SDM. For most indicators, the
two main operations are (i) filtering the species of interest
for the targeted indicator and (ii) counting the number of fil-
tered species. This can be implemented very efficiently on a
GPU through the use of binary masks and the sum of tensor
values. Only the indicator “IUCN status of the most threat-
ened species in the assemblage” requires a slightly different
process, but that was efficiently implemented by encoding

status as integers and using look-up tables and a max oper-
ator. So far, all 7, i.e., (i) Species richness, (ii) EU direc-
tive, (iii) Threatened species, (iv) Most threatened, (v) Tree
species, (vi) Invasive species, and (vii) Specialist species,
biodiversity indicator maps have been produced.

Habitat Maps. The habitat maps (see Fig. 6) were in-
ferred following a workflow similar to that used for bio-
diversity indicators. The study area was divided into
25×25km meta-tiles, which were processed in parallel.
Within each tile, the model classified each 50×50m grid cell
based on the species probabilities predicted by the SDM.
The classifier directly assigns EUNIS Level 3 habitat types,
while Levels 1 and 2 are inferred from the hierarchy.

In total, 200 habitat maps were generated at EUNIS
Level 3, covering 60.4% of all habitat types at this level.
On average, a habitat was mapped across 27.77 million grid
cells, corresponding to 0.49% of Europe’s total area. The
most widespread habitat, R22: “Low and medium altitude
hay meadow”, was predicted in 681.5 million grid cells,
covering 12.27% of Europe.

Experiments have shown that Pl@ntBERT, through its
ability to model complex inter-species relationships, is able
to outperform expert systems [9] (+5.54%) and tabular deep
learning [34] (+1.14%) methods. Overall, the measured ac-
curacy was 76% at level 1 of the EUNIS classification (8
broad habitat groups covered), 63% at level 2 (34 habitat
groups covered), and 45% at level 3 (200 habitat types cov-
ered). In Table 2, we report the full performance evaluation
with respect to the number of species that has been kept
from the SDM predictions.
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Figure 6. Example habitat maps for two selected habitats occurring in Spain and Italy at different zoom levels. These maps are produced
by Pl@ntBERT with the output of the deep-SDM all over Europe for over 200 habitat types at a 50×50m resolution.

Table 2. Evaluation of the HDM. Accuracy is reported at all three
hierarchical levels of EUNIS habitat classification (level 1 being
the broader and level 3 the finer). Retaining more species from
the deep-SDM predictions slightly improves classification perfor-
mance across all levels.

Top-SDM predictions Level 1 Level 2 Level 3

First 50 species 75.05% 61.29% 42.78%
First 100 species 76.30% 62.68% 44.72%

The model benefits from the fact that the SDM provides
richer information, i.e., a calibrated softmax. Those proba-
bilities are used directly as input in Pl@ntBERT, with pre-
dicted species being ordered in descending probability or-
der in each sentence. This is a “reciprocal rank encoding
method” but uses the probability score as the ranking func-
tion instead of the spatial coverage.

5. Conclusion

This work presents a multi-modal deep learning frame-
work based on species distribution modeling (SDM), biodi-
versity indicators calculation, and habitat classification for
high-resolution biodiversity mapping across Europe. Us-
ing remote sensing, climate variables, and species occur-
rence data, we provide a comprehensive, fine-scale view on
species distributions, ecosystem diversity, and habitat types
at an unprecedented 50×50m resolution at this scale. Our
approach enables previously infeasible large-scale ecolog-
ical assessments, offering new tools for biodiversity moni-
toring, conservation planning, and land-use management.

The Species Distribution Maps, generated using deep-
SDM, effectively predict species occurrences by combining
satellite imagery, climate time-series, and species records
from GBIF and EVA. These maps provide baseline data for
over 5,5k plant species, supporting efforts to track species
distributions, monitor ecological shifts, and guide conserva-
tion policies.

The Biodiversity Indicator Maps provide insights into
species richness, the presence of endangered or invasive
species, as well as other key ecological metrics. These maps
help identify biodiversity hotspots, vulnerable ecosystems,
and priority areas for conservation.

The Habitat Maps, created by coupling SDM predic-
tions with Pl@ntBERT, classify EUNIS habitat types across
Europe. While these maps enhance the understanding of
ecosystem distributions and habitat changes, challenges re-
main in classifying habitats at EUNIS Level 3, partly due to
inconsistencies in expert-labeled training data.

Despite large contributions, several limitations remain.
The reliance on species occurrence data from citizen sci-
ence platforms and surveys introduces spatial biases, as cer-
tain regions and species are better documented than others
(e.g, PO data are biased toward appealing species and PA
data have limited geographic coverage). Additionally, pre-
diction uncertainties persist, particularly in areas with low
observation density or rapidly changing environmental con-
ditions. The classification of habitats is further constrained
by potential inconsistencies in EUNIS labeling, impacting
the reliability of fine-scale habitat predictions. Finally, the
multimodal nature and the size of the dataset require con-
siderable computational resources for model training.
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