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8Dept. Plant Biology and Ecology, University of the Basque Country UPV/EHU, Apdo. 644, 48080 Bilbao, Spain16

9Department of Life Sciences, University of Siena, Siena, Italy17

10Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany18

11German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany19

12Department of Plant Biology and Ecology, University of the Basque Country UPV/EHU, Bilbao, Spain20

13Research Centre of the Slovenian Academy of Sciences and Arts, Jovan Hadži Institute of Biology, Novi trg 2,21
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ABSTRACT50



To address the urgent biodiversity crisis, it is crucial to understand the nature of plant assemblages. The distribution of plant

species is not only shaped by their broad environmental requirements, but also by micro-environmental conditions, dispersal

limitations, and direct and indirect species interactions. While predicting species composition and habitat identity is essential

for conservation and restoration purposes, it thus remains challenging. In this study, we propose a novel approach inspired

by advances in large language models to learn the “syntax” of abundance-ordered plant species sequences in communities.

Our method, which captures latent associations between species across diverse ecosystems, can be fine-tuned for diverse

tasks. In particular, we show that our methodology is able to outperform other approaches to (i) predict species that might

occur in an assemblage given the other listed species, despite being originally missing in the species list (+16.53% compared

to co-occurrence matrices and +6.56% compared to neural networks) and (ii) classify habitat types from species assemblages

(+5.54% compared to expert systems and +1.14% compared to deep learning). The proposed application has a vocabulary

that covers over ten thousand plant species from Europe and adjacent countries and provides a powerful methodology for

improving biodiversity mapping, restoration, and conservation biology.

51

Introduction52
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Figure 1. The proposed approach leverages large language models (LLMs) to capture the latent dependencies between plant
species in diverse ecosystems. By training on over 1.4M vegetation plots, 29M species occurrences and 14K species from
Europe and adjacent regions, the model learns the “syntax” of sentences formed by abundance-ordered plant species sequences,
allowing it to predict missing (i.e., [MASK]) taxa in sequences of species. The resulting foundation model can be further
fine-tuned to assign EUNIS habitat types to vegetation plots, outperforming traditional methods

Understanding vegetation patterns and plant assemblages is central to ecology, as co-occurring species ultimately determine53

the structure and function of ecosystems1. Plant species rarely exist in isolation2; instead, they form complex assemblages54

influenced by biotic and abiotic conditions3–5. These assemblages represent the emergent properties of ecosystems, where each55

species contributes to and is influenced by the broader assemblage6. Identifying and analyzing these intricate patterns is crucial56

for understanding the underlying mechanisms governing biodiversity and ecosystem stability and dynamic7, 8. Despite progress,57

unraveling these patterns remains challenging, given the high dimensionality and complexity of community assembly9. In this58

study, we attempt to decode the “syntax” of plant community structure, aiming to provide new insights on the composition of59

vegetation across diverse ecosystems. In this context, “syntax” refers to the implicit rules and patterns that govern how plant60

species co-occur and interact to form structured assemblages, similar to how syntax in language defines the arrangement of61

words to create meaningful sentences. Just as language syntax reveals relationships between words based on their positions and62

roles, the “syntax” of plant assemblages represents the hidden shared environmental preferences, direct and indirect interactions,63

and organization underlying species assemblages (i.e., just as the ordering of words in a sentence matters, the ranking of species64

names in a community matters as well). We focus particularly on how this approach can be used to improve habitat type65

identification, offering insights that could enhance ecological classification and conservation efforts.66

The analysis of species communities is often done by leveraging presence-absence matrices of species co-occurrences10,67

which record how many times two different species were observed together in the same vegetation plot. This traditional68

approach allows for global analyses of co-occurrence patterns in vegetation plots found in a dataset, making it suitable for69



detecting broad patterns, such as clusters of species with a high tendency of co-occurrence11–13. However, this method is70

often biased towards common species14, as they have higher occurrence frequencies across vegetation plots, leading to inflated71

co-occurrence estimates. This can obscure the detection of rare or specialized species interactions15, which may play critical72

ecological roles but are underrepresented in presence-absence matrices.73

To address this limitation, alternative approaches such as fidelity indices16 quantify species’ specificity to particular habitat74

types rather than relying solely on their co-occurrence frequencies, making them particularly useful for distinguishing diagnostic75

species from widely distributed ones. While such methods might offer an improvement over raw co-occurrence counts, they76

remain constrained by predefined habitat classifications and do not fully capture the hierarchical and context-dependent77

nature of species associations. In addition, most co-occurrence matrices only account for species presence or absence in the78

assemblage, but the relative abundance of species within plant assemblages, which is often important for habitat and vegetation79

classification17, is not taken into account. Notably, statistical interdependencies, which reflect biotic interactions, often80

exhibit asymmetric, transitive, and hierarchical patterns18, 19 that are beyond the scope of classical co-occurrence approaches81

but can be captured by novel and more sophisticated AI-based abundance-order language models. These new models use82

a transformer-type deep learning architecture based on self-attention mechanisms20 (which allow the model to weight the83

importance of each species in relation to all others in a given assemblage, much like how one might focus on key words in a84

sentence to understand its meaning). This allows such a model to account for bi-directional dependencies (asymmetry, i.e., if85

species A influences species B but species B does not necessarily influence species A) and aggregate indirect relationships86

across assemblages (transitivity, i.e., if species A influences species B and species B influences species C then species A87

influences species C). It can also learn hierarchical patterns in the assemblage, such as which species are often abundant and88

how they can influence other species that are often less abundant.89

A concrete application of the model evaluated in our study is the classification of European habitat types based on ordered90

species assemblages. Europe hosts a rich diversity of vascular plant species, contributing to a great number of unique habitats21
91

shaped by both biotic and abiotic factors and protected by the European Habitats Directive. However, this biodiversity faces92

many problems, including, but not limited to, the effects of various kinds of agricultural activities (e.g., intensification for93

more productive farming and abandonment of traditional land use) and modifications of natural systems (e.g., dredging and sea94

defense works)22. All habitats protected by the Habitat Directive are listed in Annex I of this directive23 and with the new EU95

restoration law, a large proportion of these habitats have to be in favorable state in the near future24. A major challenge is that96

in many EU countries, only a fraction of these habitats have been mapped, making it difficult to monitor their development and97

condition. Moreover, even when mapped, their ecological quality often remains unknown, further complicating conservation98

and management efforts. Here, we try to patch this major knowledge gap.99

For the purpose of this study, habitats were defined as terrestrial, freshwater or marine areas characterized by geographic,100

abiotic and biotic features25. We leveraged the European Nature Information System (EUNIS)26 maintained by the European101

Environment Agency (EEA). This hierarchical classification system covers all types of habitats and contains at least five levels102

of complexity27. We retained the first three levels: broad habitat groups (level one), habitat groups (level two), and habitat types103

(level three). Our work especially focused on the level three of eight broad habitat groups.104

Habitat distribution modeling typically involves linking information on plant species composition (such as a full list of105

vascular plant species with estimates of cover abundance) and environmental covariates (such as whether a community is106

located on a coastal dune28 or within a specific terrestrial ecoregion29) to habitat type occurrences. This approach helps identify107

the habitat type of vegetation plots. There are two basic types of methodologies used for vegetation classification based on108

species composition30: expert systems31 and machine learning32. The former leverage explicitly defined logical rules and109

emulate the process of expert classification done by humans33, whereas the latter are tools for induction of the independent110

knowledge base.111

Expert systems, even though they are still the most used tools to assign plots to vegetation types34, do not consistently align112

with the basic requirements for vegetation classification35:113

• they tend to overfit by learning the detail in the training data too well. Thus, minor changes in a vegetation plot (e.g., a114

small difference in the cover of an individual species) can considerably alter the result of the classification procedure,115

making those expert systems not robust.116

• some of them involve sets of external criteria (e.g., environmental or geographical attributes of vegetation plots in addition117

to species composition) to classify some vegetation types, making those expert systems not simple.118

• they are often based on one specific nomenclatural and taxonomic dataset, but using vegetation plots from different119

origins might result in different names for the same entity or identical names for different entities (depending on the120

taxonomic concepts and determination literature used in a particular region or period), making those expert systems not121

consistent.122
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Modern deep learning techniques have great potential for modeling habitat distributions36. In particular, experiments123

with feedforward neural networks have shown that they have the ability to capture complex information about the plant124

species composition of vegetation plots to classify plant communities37. One limitation of such models, however, is that their125

architecture induces an intrinsic inductive bias in the sense that they process each plant species as if it is equally different from126

all the others38. Thus, they cannot accurately model complex relationships between plant species. Therefore, they are not really127

suitable for modeling ecological systems and identifying habitat types where the interdependencies between plant species are128

complex39. While classical approaches offer interpretable and mathematically grounded methods for ecological modeling40,129

they may lack the capacity to learn latent patterns (i.e., underlying structures, correlations, or dependencies within the data130

that are not explicitly observable such as subtle co-occurrence relationships between plant species, hierarchical community131

structures, or environmental gradients that shape species assemblages) from high-dimensional data.132

In contrast, transformers41, a different kind of deep learning model, go beyond local processing and exploit global attention133

mechanisms for increased performance. Although transformers were leveraged in various fields of biology (e.g., the extraction134

of morphological traits42 or the prediction of protein structures43), their use in vegetation classification is still largely unexplored.135

Such models should allow the segmenting of habitats in a much more efficient manner than current methods. In particular,136

large language models (LLMs) have not yet been embraced by the global community of ecologists despite their ability to find137

patterns and correlations in noisy biological data44.138

The goal of this work is to enhance the understanding of species assemblages and facilitate habitat identification within139

Europe through the use of the potential of LLMs. To achieve this goal, we introduce a novel computational pipeline centered140

around Pl@ntBERT45, a model based on BERT46 (i.e., Bidirectional Encoder Representations from Transformers, a deep141

learning model originally designed for natural language understanding). Consequently, it means that without any further142

adaptation (i.e., fine-tuning), Pl@ntBERT would be only pre-trained in a self-supervised manner on very large volumes of143

common text data unrelated to vegetation (i.e., BookCorpus and English Wikipedia) and would be some kind of Swiss army144

knife solution (i.e., this model would work for the most common language tasks, such as sentiment analysis or named entity145

recognition, as long as they don’t require a deep knowledge of the domain). However, to make it ecologically meaningful,146

we pre-train it (i.e., we make the model learn the general structure in the data) on an in-domain dataset named the European147

Vegetation Archive (EVA)47, an integrated database of European vegetation plots. This adaptation allows Pl@ntBERT to develop148

a statistical representation of the vegetation assemblages, capturing implicit relationships between species that commonly149

co-occur, and boost the performance of the downstream task (i.e., habitat type identification).150

The next step is to train the model for a supervised classification task: assigning habitat types to species assemblages. We151

use the EUNIS classification system, a widely used European framework that organizes vegetation into hierarchical habitat types152

based primarily on dominant species composition, ecological structure, and environmental conditions. The EUNIS typology153

provides a standardized way to classify and compare habitats across Europe, making it a key reference for conservation and154

land management. Unlike traditional expert systems, which rely on manually defined classification rules, or classical machine155

learning approaches, which process species independently without considering their ecological interdependencies, Pl@ntBERT156

learns to infer habitat types by recognizing patterns in species composition and their statistical relationships. This approach157

enhances classification accuracy, mitigates inconsistencies in taxonomic nomenclature, and provides a scalable solution for158

habitat identification, including for habitats under threat of collapse.159

Results160

The syntax of species assemblages161

Understanding the structure of species assemblages requires capturing both direct and indirect relationships between co-162

occurring species. To measure Pl@ntBERT’s ability to capture these complex relationships from abundance-ordered species163

communities, we evaluated it on a so called masking or fill-mask task (i.e., a species is removed from the assemblage, and164

the accuracy of the model in recovering the right species is measured). This approach is conceptually related to the notion of165

dark diversity48, as it aims to identify missing species that, based on the ecological context, are expected to be present but are166

absent in a given assemblage. For this evaluation, we tested different versions of Pl@ntBERT, which vary in how they tokenize167

species names. Refer to the Methods section for more details about these different versions. Naturally, the “term” versions (i.e.,168

both small and large models), that split species names into two tokens (i.e., one for the genus name and one for the species169

epithet), perform better when it comes to replacing masked tokens in a sentence, because each mask only hides a half of a170

species name (i.e., either the genus name or the species epithet). As a result, it is easier for these models to figure out what the171

other half of the binomial name is (e.g., “thinopyrum junceum, [MASK] marina, pancratium maritimum”). On the contrary,172

each mask of the “species” versions of Pl@ntBERT hides completely a species name, meaning that the model has to choose173

between over 14K different species to replace the mask (e.g., “thinopyrum junceum, [MASK], pancratium maritimum”).174

To assess how well Pl@ntBERT captures species relationships beyond simple co-occurrences, we conducted a comparative175

evaluation against two alternative approaches: (1) a naive Bayes model49 using only the species co-occurrence matrix and (2) a176
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Figure 2. Overall masking accuracy (micro-averaged over the ten cross-validation folds) of the three methods (2a), breakdown
of the rank accuracy (2b), and specific focus of the results obtained by the large-species model (2c), the co-occurrence matrix
(2d), and the neural network (2e). Only the labeled vegetation plots for which over ten species were recorded were kept in the
test set. For each remaining vegetation plot (n = 705 479), the ten most abundant species were masked one by one and the
accuracy corresponding to each rank was computed. Note the difference in y axis in the three graphs of Figures 2c, 2d, and 2e.
Figure 2b shows the three error bars displayed on the same y axis.

classical deep learning model50 based on a feedforward neural network (see Figure 2). This comparison allowed us to determine177

whether Pl@ntBERT’s ability to encode species assemblages translates into improved predictive power when identifying178

missing species in vegetation plots. The graphs (see Figure 2b) show that the Pl@ntBERT model clearly outperforms the179

co-occurrence matrix at every rank (i.e., at every position that species can occupy in the vegetation plot when they are sorted by180

cover-abundance). Moreover, the co-occurrence matrix tends to perform worse when the species is less abundant (see Figure181

2d). The neural network is very good for the most dominant species, even outperforming the Pl@ntBERT model on the first182

ranks. However, when the species become less abundant, it quickly loses its predictive power (see Figure 2e). In contrast, the183

Pl@ntBERT model tends to perform better for rare species than for common species (see Figure 2c). Indeed, the accuracy of184

its predictions drops sharply when the first ranked species (most abundant) are masked (from around 22% to around 16% for185

species ranked second to third) but then slowly increases for species ranked after (and stabilizes around 18% for species ranked186

tenth). This indicates that, as the first species is the one contributing the most to the assemblage structure and identity, it is187

easy for our model to find it if it has complete knowledge of the assemblages (i.e., all other species), especially the second188

and third species. Moreover, it shows that the presence of abundant species is essential but not sufficient to determine the189

habitat. However, the assemblage of the first three species (and also the assemblage of only the second and third species) is190

often sufficient to determine the habitat. This emphasizes the critical role that species abundance plays in accurately predicting191

missing species in an assemblage. As it is often the rarer and less abundant species that are missing from vegetation-plot192

records, this experiment highlights the importance of using models like Pl@ntBERT to capture nuanced relationships between193

species.194

The task of finding missing species from highly diverse, incomplete plant assemblages benefits significantly from the ability195

to capture complex relationships, leverage extensive textual data for contextual understanding, and learn rich, abstract data196
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representations. A comparison between the results obtained by the Pl@ntBERT model, the co-occurrence matrix, and the197

neural network (see Supplementary Figure S12 online) shows that large language model clearly outperforms the other two198

approaches in this regard. LLMs provide a holistic view that aids in recognizing patterns and improving species identification.199

The co-occurrence matrix relies on simple frequency counts of species pairs appearing together in the training dataset51 and the200

neural network relies on one-hot encoded assemblages of co-occurring species52, which lack the contextual understanding201

necessary to accurately predict the masked tokens in a complex and domain-specific dataset such as plant species names.202

Whatever the broad habitat groups (e.g., Vegetated man-made habitats, Wetlands, Forests and other wooded land), Pl@ntBERT203

consistently outperforms the co-occurrence matrix by a factor of more than ten and, except for Littoral biogenic habitats and204

Coastal habitats, the neural network by a factor of almost two (overall accuracy of 17.49% for the Pl@ntBERT model, of 0.96%205

for the co-occurrence matrix, and of 10.93% for the neural network, see Figure 2a).206

Furthermore, we show that Pl@ntBERT is able to perform better than both the co-occurrence matrix and the neural network207

when detecting species patterns (see Supplementary Figure S29 online). In scenarios where three species A, B, and C occur208

together more than 100 times in a vegetation plot but where species A and species C never occur together without species B,209

Pl@ntBERT is often able to predict that the species B is required for the presence of the other two species, unlike the other210

methods. In contrast, the co-occurrence matrix and the neural network repeatedly predict common species (e.g., Dactylis211

glomerata, which is the most frequent species in the dataset, or Phragmites australis), even in cases where they are not plausible212

candidates, showing a tendency to favoring species that appear many times in the dataset rather than recognizing specific213

ecological patterns. Pl@ntBERT’s success demonstrates its capacity to learn the complex “syntax” of plant assemblages and214

correctly identify species occurrence relationships, even in complicated ecological contexts. This further emphasizes the215

model’s potential to improve vegetation surveys and habitat assessments by providing more accurate and context-sensitive216

species predictions. Indeed, observer errors (e.g., overlooking errors53 and misidentification errors54) may result in species217

richness being artificially underestimated55.218

The task of finding a missing species in an assemblage is a complex problem, as the hypothesis space is large. Indeed, when219

asked to replace a [MASK] token in a sentence describing a vegetation plot, the model Pl@ntBERT must select from over220

14,000 different vascular plant species. However, the perplexity56 of the base model indicates that it mostly hesitates between221

around 12 species when it has to replace the mask. More importantly, an experiment shown in Supplementary Figure S15222

indicates that:223

• when the Pl@ntBERT model (the large-species version) does not replace the [MASK] token by the correct species, it224

actually outputs a species coming from the same vegetation class57 (i.e., the same broad unit in a hierarchical classification225

system that group plant communities based on shared floristic composition, ecological characteristics, and biogeography)226

over 39% of the time. For comparison, a random approach (i.e., predicting a random species to replace the [MASK]227

token) would result in a species coming from the same vegetation class around 3.5% of the time.228

• when the Pl@ntBERT model (the large-species version) does not replace the [MASK] token by the correct species, it229

actually outputs a species that is characteristic of the habitat type (level 3) of the vegetation plot 49% of the time, of the230

habitat group (level 2) 66% of the time, and of the broad habitat group (level 1) 76% of the time. For comparison, a231

random approach would result in a species being characteristic of the habitat type of the vegetation plot 0.3% of the time,232

of the habitat group 2.3% of the time and of the broad habitat group 7.0% of the time.233

In addition, a comparison of the vocabularies of different models can be found in Supplementary Table S18. For example,234

verticillatoinundata, a species epithet, is divided into eight pieces ([ve, ##rti, ##ci, ##lla, ##to, ##in, ##unda, ##ta]) by BERT235

and into seven pieces ([ver, ##tic, ##illa, ##to, ##in, ##und, ##ata]) by SciBERT59 (i.e., a BERT model trained on scientific text).236

In contrast, this term appears in the in-domain vocabulary of Pl@ntBERT, as well as around 10,000 other genus names and237

species epithets. Species names are specific, meaningful biological entities. Splitting them into multiple smaller components238

(referred to as “subwords” in machine learning terminology) blocks the model’s ability to recognize these tokens as representing239

a unified biological entity. Instead of treating the entire species name as a single, coherent unit, the model sees it as a collection240

of unrelated fragments, which reduces its ability to capture biological relationships. An example of the benefits of domain241

adaptation is shown in Figure 3. It shows that Pl@ntBERT (i.e., a fine-tuned BERT), compared to a vanilla BERT (i.e., the242

standard, pre-trained BERT model not specialized for plant-related data), really “understands” plant species compositions. A243

visualization of the attention in Pl@ntBERT can be found in Supplementary Figure S8. This makes the model more accessible244

and shows at multiple scales which species in a vegetation plot most influence the predictions.245

Identifying habitat types246

To optimize the hyperparameters (i.e., learning rate and batch size) and identify the set of parameters yielding the most accurate247

model, we first fine-tuned all versions of Pl@ntBERT using the first fold as a test set and the remaining nine folds as a training248

set. All results obtained during this fine-tuning process can be found in Supplementary Table S4. Table 1 gives an overview249
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prunus padus, [MASK] and crataegus monogyna are constant 
species of temperate hardwood riparian forests (T13).

BERT Pl@ntBERT

Predictions like in the 
pre-training dataset

Predictions like in the 
fine-tuning dataset

>>> prunus padus, willow and crataegus monogyna are constant species of temperate hardwood 
riparian forests (T13). (28%)

>>> prunus padus, acacia and crataegus monogyna are constant species of temperate hardwood 
riparian forests (T13). (26%)

>>> prunus padus, eucalyptus and crataegus monogyna are constant species of temperate 
hardwood riparian forests (T13). (20%)

>>> prunus padus, aspen and crataegus monogyna are constant species of temperate hardwood 
riparian forests (T13). (15%)

>>> prunus padus, oak and crataegus monogyna are constant species of temperate hardwood 
riparian forests (T13). (11%)

>>> prunus padus, acer campestre and crataegus monogyna are constant species of temperate 
hardwood riparian forests (T13). (44%)

>>> prunus padus, sorbus aucuparia and crataegus monogyna are constant species of temperate 
hardwood riparian forests (T13). (17%)

>>> prunus padus, viburnum opulus and crataegus monogyna are constant species of temperate 
hardwood riparian forests (T13). (17%)

>>> prunus padus, cornus sanguinea and crataegus monogyna are constant species of 
temperate hardwood riparian forests (T13). (12%)

>>> prunus padus, euonymus europaeus and crataegus monogyna are constant species of 
temperate hardwood riparian forests (T13). (10%)

Figure 3. Comparison of the top five predictions for the BERT (large-uncased version) and Pl@ntBERT (large-species version
trained on folds 1-9) models for our sample text of “Prunus padus, [MASK] and Crataegus monogyna are constant species of
temperate hardwood riparian forests (T13).”. On the one hand, the candidates from BERT are all trees, which shows that the
model “understood” we are in a forest. However, all of them are common plant names (and not scientific names of taxa) and,
except for the oak which is the last candidate, are not found within the T13 habitat type. On the other hand, the candidates from
Pl@ntBERT are all scientific names of constant species58 from the required habitat type.

of the results obtained in the text classification task, and Supplementary Figure S5 provides more details. Among all tested250

models, Pl@ntBERT-large-species appears as the clear winner when it comes to identifying habitat types, outperforming251

all other models, whether it is on top-1 accuracy (i.e., the first candidate output by the model is the real habitat type, or252

level 3 habitat), top-3 accuracy (i.e., among the three first candidates output by the model is the real habitat type, or level 3253

habitat), group accuracy (i.e., the first candidate output by the model belongs to the real habitat group, or level 2 habitat),254

or broad accuracy (i.e., the first candidate output by the model belongs to the real broad habitat group, or level 1 habitat).255

It also outperforms models that, in addition to species composition, use the abiotic environment and geographic location as256

classification criteria. The different versions of the expert system EUNIS-ESy and the different models of hdm-framework,257

as statistical and general-purpose machine learning approaches, are not capable of matching domain-adapted models such as258

Pl@ntBERT for specialized tasks in vegetation classification.259
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(a) Results across the European Red List of Habitats categories (DD:
Data Deficient, LC: Least Concern, NT: Near Threatened, VU:
Vulnerable, EN: Endangered, CR: Critical Endangered). The best
accuracy is in green and the worst accuracy is in red.
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Figure 4. Accuracy obtained by the Pl@ntBERT-large-species model on different typologies (results averaged over the ten
cross-validation folds)

Pl@ntBERT (the large-species version) achieves an accuracy of 92% when asked to classify a vegetation plot into one of260
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Table 1. Comparison between Pl@ntBERT and several habitat identification alternatives: the expert system EUNIS-ESy60 and
the tabular deep learning models from hdm-framework61. The models from hdm-framework were used with the settings
recommended by the authors. The algorithms from EUNIS-ESy were implemented in the statistical computing environment
R62. All results were averaged over the same ten cross-validation folds. A ∼ indicates that the cell is not applicable or relevant
for the corresponding model. “Group accuracy” denotes the accuracy of the models on level 2 of the EUNIS hierarchy (i.e.,
habitat groups) and “Broad accuracy” denotes the accuracy of the models on level 1 of the EUNIS hierarchy (i.e., broad habitat
groups). The predictions were always made at level 3 of the EUNIS hierarchy (i.e., habitat types) and the higher hierarchical
levels were then inferred by removing one or two characters from the EUNIS habitat code. EUNIS-ESy uses the exact cover
abundance of each species instead of its rank in a vegetation plot. As this expert system also requires plot-location criteria
(country name, terrestrial ecoregion, coastline, coastal dune, degrees of latitude and longitude, elevation, and dataset name) to
perform classification, and hdm-framework performs better with information about plot location as well (the same predictors
except the dataset name), we added those covariates. hdm-framework was also evaluated purely based on species composition
for a fair comparison with Pl@ntBERT, which does not use any additional variables than the species composition. The bold
entries are the best-performing model for each metric. More information about the metrics can be found in Supplementary Text
S6.

Framework Model
Fine-tuning

Accuracy (%) Top-3 accuracy (%) Group accuracy (%) Broad accuracy (%)

Predictors: species composition, abiotic environment, and geographic location

EUNIS-ESy
v2020-06-08 82.68 ∼ 84.34 90.72
v2021-06-01 86.44 ∼ 88.26 94.64

hdm-framework

MLP63 90.84 98.90 93.94 95.79
RFC64 80.37 95.73 87.85 92.13
XGB65 88.81 98.95 93.00 95.69
TNC66 81.50 92.13 87.11 90.70
FTT67 88.84 97.28 92.65 94.92

Predictors: species composition

hdm-framework

MLP 90.00 98.73 93.36 95.27
RFC 80.34 95.66 87.82 92.00
XGB 88.11 98.75 92.60 95.29
TNC 80.64 91.73 86.40 89.98
FTT 87.92 97.06 92.08 94.40

Pl@ntBERT (ours) large-species 91.98 99.10 94.79 96.42

the 227 habitat types present in the dataset. More details on how some habitat groups are sometimes confused with other habitat261

groups can be found in Supplementary Figure S13. As shown in Figure 4, when assessing the risk of habitat collapse (after262

converting the predictions from EUNIS habitat types to European Red List of Habitats categories), Pl@ntBERT achieves an263

overall micro-accuracy of 96.5%. Furthermore, our transformer-based method outperforms all other approaches in the accuracy264

of identifying conservation status (see Figure 4a) and broad habitat groups (see Figure 4b). As a result, Pl@ntBERT can be265

seen as a powerful tool to inform and catalyze action for biodiversity conservation and policy change. More details about the266

distribution of the European Red List of Habitats categories across the dataset can be found in Supplementary Figure S27. We267

use this model to map all the unlabeled vegetation plots from the dataset, and we compare the output with the map of all labeled268

vegetation plots from the dataset in Supplementary Figure S33 (with a further breakdown on each individual broad habitat269

group from the fill-mask dataset in Supplementary Figure S34).270

Some other experiments found in Supplementary Figure S17 show that the most important species for identifying the habitat271

type of a vegetation plot are the first ones in the cover-abundance rank. Indeed, over all the vegetation plots of the dataset272

containing ten species or more, Pl@ntBERT-large-species achieves an accuracy of 92.2%. When removing the first species (i.e.,273

the most abundant) of each vegetation plot, the accuracy drops by 35 percentage points to 57.2%). When removing the last274

species (i.e., the least abundant) of each vegetation plot, the accuracy almost stays the same and only drops by 0.43 percentage275

points (91.7%). When removing a random species from each vegetation plot, the accuracy decreases by 3.0 percentage points276

to 89.2%. This discrepancy likely arises because dominant species shape the ecological structure of habitats. These results277
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highlight the strong influence of dominant species in habitat type identification, while rare species contribute minimally to the278

model’s predictive performance.279

Open science280

To facilitate the reproducibility of our study and the reuse of codes and models, we develop, share and maintain a generic, free,281

and open-source deep learning framework facilitating the training and evaluation of predictive models of habitats from in-situ282

observation data and the inference on new and unseen vegetation-plot records. The framework, coded in the programming283

language Python68 and powered by the parallel computing platform CUDA69 for accelerated training and inference, is accessible284

to various user profiles (including non-deep learning experts who want to easily identify European habitat types) at the following285

link: https://github.com/cesar-leblanc/plantbert. A user guide on how to install the framework and run the286

basic tasks (i.e., data curation, fill-mask training, text classification training, and inference) can be found in Supplementary Text287

S20 and some examples of how the model works can be found Supplementary Text S23. If the user only have a few vegetation288

plots from which they want to find potentially missing species or identify the habitat type, a quicker way to test the framework289

is to visit the tool available here: https://huggingface.co/spaces/CesarLeblanc/plantbert_space. A290

demo can be found in Supplementary Figure S19.291

Discussion292

The Pl@ntBERT model has been created to offer novel insights into how vegetation patterns can be encoded and classified,293

contributing to advancements in plant ecology and conservation biology70. It introduces an innovative approach by leveraging294

NLP techniques on top of abundance-ordered species lists from specific sites aimed at capturing complex species relationships295

such as transitive or sequential dependencies. As a result, it can model the species composition of hundreds of terrestrial,296

freshwater, and marine habitat types that contain plants, including most of the threatened, vulnerable, and endangered ecosystems297

found across Europe and adjacent areas71. It addition, this approach can be expanded worldwide, e.g., by applying it to the298

global vegetation plot database sPlot72.299

The model has been primarily designed to predict missing species in an assemblage (which can also be used for predicting300

species pools of plant assemblages73), e.g., in incomplete monitoring projects74, leveraging masked language modeling to301

infer statistically probable species compositions, hence enhancing species completeness and improving vegetation surveys.302

This capability is especially relevant in cases where survey data may be incomplete or where one or more species could be303

overlooked due to sampling limitations or observer bias. By simulating the expected species pool, Pl@ntBERT offers a means304

to improve the ecological relevance of data used for habitat assessments, management, and reporting. This predictive function305

can support the identification of indicator species and enhance the detection of key ecological patterns that may be otherwise306

underrepresented. However, although Pl@ntBERT can predict missing species in incomplete assemblages, caution is needed307

when interpreting these predictions. In some cases, a species’ absence from a vegetation plot might be due to observer bias or308

sampling limitations, in which case its predicted presence could be justified. But some absent species belong to dark diversity309

(i.e., species expected to occur based on ecological conditions but that are genuinely missing due to dispersal limitations),310

competition, or other constraints. In such cases, attempting to “correct” field surveys by adding model-predicted species311

risks misrepresenting reality and creating fictional plots, which could introduce more error than it solves. From an ethical312

standpoint, modifying field data in this way might also be controversial, as it could lead to unintended biases in conservation313

and management decisions. Incomplete data are an inherent part of ecological research, and rather than filling gaps artificially,314

it might sometimes be preferable to acknowledge and work with these uncertainties.315

The second key application of Pl@ntBERT is its capacity to classify plant species records into EUNIS habitat types. This316

ability addresses an essential need in habitat identification and conservation planning, where the ability to classify survey317

data is foundational for monitoring biodiversity and guiding restoration efforts. Traditional methods have largely relied on318

manual expertise or rigid algorithms that cannot capture the complex patterns and overlook associations that occur in large319

ecological datasets. By leveraging transformer-based architectures and fine-tuning them with domain-specific botanical datasets,320

Pl@ntBERT offers a more refined and accurate approach. It is also worth noting that some vegetation plots in the EVA database321

may represent transitional or ecotonal habitats that do not fit neatly into a single EUNIS type. Such cases introduce ambiguity in322

classification and may contribute to an underestimation of Pl@ntBERT’s true accuracy, as the model is trained to assign exactly323

one habitat type, that might be ecologically reasonable but could differ from the labeled category. It is also important to consider324

potential regional biases due to uneven plot densities in EVA. Some habitat types may be disproportionately represented in325

well-surveyed regions, leading the model to learn patterns that reflect data availability rather than true ecological distributions.326

This could result in higher accuracy for frequently sampled habitats and reduced performance for underrepresented ones.327

By learning the context to translate plant species into a modelled ecological process within an ecosystem, Pl@ntBERT328

is able to improve vegetation models for identifying habitat types. This domain adaptation helps the model automatically329

understand that some species occur only in very specific assemblages, whilst others can tolerate and thrive in a wide range of330
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ecosystems. Therefore, predictions are influenced not only by the actual occurrence of a given species but also by the relative331

probability of the presence of this species. However, some habitat types, such as those listed in Annex I, are not solely defined332

by vegetation but rather by geomorphological or geolocational parameters (e.g., springs, cliffs, and dune slacks). These features333

are unlikely to be predictable by Pl@ntBERT, as they do not necessarily correlate with species composition alone. Similarly,334

certain species-poor habitats present challenges for classification since their low species richness limits the available signal for335

distinguishing between communities. Moreover, in few cases, it is impossible to distinguish some habitats by plant species336

composition and relative abundance alone, because their species composition can be the same even if they occur in different337

regions. This is one of the main reasons why attribute data were incorporated in expert-based systems like EUNIS-ESy, rather338

than relying purely on species presence.339

The relative position of the species within a vegetation plot (i.e., their abundance compared to the other species) is key340

to habitat type identification and fragmentary records completion (even more than the exact cover-abundance information of341

each individual species). When surveying plant species, it might be hard, whatever the level of expertise, to accurately collect342

the exact abundance of plants in a vegetation plot75. However, recording the relative abundance of the most abundant species343

is much easier and often sufficient. However, the spatial scale was not explicitly considered when selecting data for domain344

adaptation (fill-mask task) and training (text classification task). Since plant species typically co-occur at small spatial scales (a345

few meters), including plots from larger spatial scales may introduce noise by grouping species that do not actually form a346

coherent community. For example, a few meters’ difference in elevation or soil moisture can lead to entirely different plant347

communities, yet a model trained on large-scale data may incorrectly associate species that do not truly co-occur. The larger the348

spatial scale used, the messier the ecological signal becomes. We did not account for this explicitly because EVA contains a349

limited number of plots, and we aimed to retain as many as possible, assuming that vegetation scientists conducted relevés with350

spatial scale in mind. However, future work should investigate how different spatial resolutions impact model performance.351

The use of large language models for understanding vegetation patterns is particularly interesting because these models352

can learn and interpret the “syntax” of plant species assemblages. Like natural languages are composed of words following353

grammatical rules, plant assemblages can be thought of as following certain ecological “rules” that dictate how species354

co-occur and interact76. By leveraging the bi-directional architecture of BERT, Pl@ntBERT can effectively learn these355

intricate patterns, by capturing relationships between species in both forward and backward directions, which provides a356

more comprehensive view of assemblage composition77. This allows the model to understand not only direct associations but357

also higher-order dependencies within complex assemblages78. Such a syntactic approach enables Pl@ntBERT to represent358

ecological interdependencies with a level of detail that is challenging for traditional statistical methods, offering a novel way359

of encoding the relationships that define biodiversity79. Through this perspective, Pl@ntBERT provides a more nuanced360

understanding of the “grammar” underlying ecosystem composition and dynamics, ultimately contributing to better conservation361

and habitat management strategies, and possibly to a better fundamental understanding of nature. However, as it is a large362

language model, Pl@ntBERT can only learn from existing datasets and cannot anticipate novel species assemblages that may363

emerge in response to climate change, species invasions, or land-use changes. This is particularly relevant for neoecosystems,364

where new combinations of native and non-native species form as environmental conditions shift. Pl@ntBERT cannot infer365

future biodiversity patterns beyond what is already recorded in datasets, meaning that ongoing field surveys and expert input366

remain essential. Ecologists will need to continuously document new assemblages and update training data to keep the model367

relevant in a rapidly changing world. This underscores that Pl@ntBERT is not a replacement for field expertise but rather a tool368

to assist researchers in making sense of complex ecological patterns.369

When it comes to vegetation classification, having a good understanding of how and why Pl@ntBERT assigns a EUNIS370

habitat type to a given vegetation plot is essential if we want researchers and practitioners to trust the results80. Integrated371

gradients81, a method to calculate how important each input feature (i.e., species) is to the prediction, were used to explain how372

positively or negatively a species contributes to the classification of a vegetation plot. A more detailed overview of species373

attributions on a vegetation plot can be found in Supplementary Figure S28. It is interesting to see how a change in diagnostic,374

constant, or dominant taxa can change the model behavior. This study shows that the most abundant species in a vegetation375

plot (i.e., the first species of the sentence) is often the one that contributes the most to the classification, which reflects the376

experience with probabilistic keys for identifying vegetation types82. One of the advantages of this model is that it brings377

vegetation science closer to a wider circle of people.378

Other experiences, whose details can be found in Supplementary Figure S22, corroborate these findings. When removing379

the information on abundance (i.e., by forming sentences with species in random order), the performance of Pl@ntBERT380

significantly drops. For example, the accuracy of the text classification task decreased by 14% compared to the classical381

approach. This drop was more important than when we kept the information on abundance but removed 30% of the species by382

random selection, meaning that capturing the relative abundance is more important than recording all plant species. Similarly,383

when it comes to finding which species is hiding behind a mask in a vegetation plot, Pl@ntBERT went from correctly assigning384

the correct species in over 17% of the cases when the species were sorted to less than 7% of the cases when the species were385
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not sorted. This means that plant assemblages are defined not only by the species present but also by their order of abundance386

because abundance influences community structure, ecological interactions, and ecosystem functioning. Abundance influences387

functional diversity, which is critical for ecosystem processes. Species with higher abundance often have significant roles in388

ecosystem functioning due to their traits and interactions with other species83.389

While Pl@ntBERT demonstrates promising results in identifying vegetation patterns and assigning habitat types based on390

species co-occurrence, one key limitation of the current model is that it does not explicitly account for the vertical structure of391

plant communities. Some habitats are characterized not only by their species composition but also by their layering structure,392

which plays a crucial role in defining their ecological identity. Thus, a possible improvement would be to introduce explicit393

hierarchical encoding of vegetation strata within Pl@ntBERT’s input data. This could be achieved by adopting a standardized394

syntax, such as: “Tree layer: Fagus sylvatica, Quercus robur; Shrub layer: Carpinus betulus, Fagus sylvatica, Corylus avellana;395

Herb layer: Anemone nemorosa, Hyacinthoides non-scripta, Mercurialis perennis”. By integrating layering information into396

Pl@ntBERT’s training, the model could better capture functional differences between habitats (especially those that are defined397

as much by their structural complexity as by species composition alone), improve classification accuracy, and potentially398

enhance its ability to predict missing species within specific strata. Additionally, this hierarchical representation could facilitate399

better interpretability, as users could analyze species associations within distinct vertical layers rather than treating all species400

as equally co-occurring in a single homogeneous space. Future work should explore how to best format and standardize401

stratification data, as well as whether habitat-specific differences in layering (e.g., grasslands vs. forests) require different402

encoding strategies. Incorporating structural information into Pl@ntBERT could significantly refine its ecological modeling403

capabilities, making it a more powerful tool for vegetation science and conservation applications.404

Finally, as a perspective, an interesting approach could be to directly train a habitat type classifier on the output of a species405

distribution model (SDM) instead of relying solely on real vegetation plots (e.g., by ranking the species in descending order of406

the probability of occurrence). SDM, which have been widely used for predicting species occurrences based on environmental407

variables84, 85, provide a solid foundation for such tasks. Building on this, modern deep-learning techniques, often referred to as408

Deep-SDMs, have already shown great potential for modeling species distributions86, 87, and in particular for vascular plant409

species88, 89. Hence, a next step could involve leveraging the vast number of geolocated plant species occurrences available410

on citizen science platforms90, 91. These platforms provide far more plant occurrence data than traditional vegetation-plot411

datasets92, and their communities can be very engaged93, 94. Those communities are not experts in botany and thus they may412

capture the most common and iconic species but miss the rare and difficult to recognize ones, so using Pl@ntBERT to complete413

and fill citizen science data could be useful. By utilizing this wealth of data, it may be possible to develop very high-resolution,414

multi-modal species distribution models. These predicted assemblages could then be used to infer habitat types. A pipeline415

based on computer vision (convolutional neural networks95) and natural language processing (transformers96) and focusing416

on (i) image classification (plant assemblages created with satellite images and rasterized environmental data), (ii) fill-mask417

(predicted species translated into a modeled ecological process) and (iii) text classification (habitats assigned to sentences418

describing species compositions) could become a powerful workflow for understanding and monitoring biodiversity dynamics,419

and going from habitat identification models to Habitat Distribution Models (HDMs).420

Methods421

A visualization of the methodology used in this paper can be seen in Figure 1, a more complete overview in Supplementary422

Figure S26 and a detailed description of each step in Supplementary Figures S9, S10, and S11. An explanation of all acronyms423

and terms can be found in Supplementary Texts S30 and S31.424

Leveraging vegetation plots425

The data used for training the Pl@ntBERT model were extracted from the European Vegetation Archive (EVA)47. EVA is a426

database of vegetation plots, i.e., records of plant taxon co-occurrence which have been collected by vegetation scientists at427

particular sites and times. The EVA data was extracted on May 22nd, 2023. It contained all georeferenced plots from Europe428

and adjacent areas (i.e., 1,731,055 vegetation plots and 36,670,535 observations from 34,643 different taxa).429

These vegetation plots were first split into two sets, depending on the presence or absence of a habitat type label:430

1. a dataset containing unlabeled data, i.e., vegetation plots with a missing indication of EUNIS habitat type. This dataset431

(henceforth “fill-mask dataset”) containing 572,231 vegetation plots could only be used for training the masked language432

model.433

2. a dataset containing labeled data, i.e., vegetation plots with an indication of EUNIS habitat type. This dataset (henceforth434

“text classification dataset”) containing 850,933 vegetation plots could be used for training both the masked language435

model and the text classification model.436
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To ensure a clean dataset representing vegetation patterns well, some additional pre-processing steps were conducted. We437

removed the few species with a given cover percentage of 0, assuming these were errors or scientists reporting absent species438

(which resulted in 31,813,043 observations remaining). We merged duplicated species in the same vegetation plots (i.e., species439

that appeared twice or more in one vegetation plot because they were in different layers) and their percentage covers were440

summed97 (which resulted in 31,036,661 observations remaining). The taxon names were then standardized98 using the API of441

the Global Biodiversity Information Facility (GBIF). It relies on the GBIF Backbone Taxonomy as its nomenclatural source442

for species taxon names and integrates and harmonizes taxonomic data from multiple authoritative sources (e.g., Catalogue443

of Life99, International Plant Names Index100, World Flora Online)101. As EVA is an aggregator of national and regional444

vegetation-plot databases, this step ensured that the same species collected in two very distant areas still shared the same445

name102. If no direct match was found for the species name (e.g., the GBIF Backbone Taxonomy is not able to provide a446

scientific name for the EVA species “Carex cuprina”), then it was dropped. As we focused on the species taxonomic rank,447

taxa identified only to the genus level were dropped, and taxa identified at the subspecies level were lumped together at the448

species level (e.g., Hedera was dropped but both Hedera helix subsp. helix and Hedera helix subsp. poetarum were merged into449

Hedera helix). This resulted in 29,859,407 observations remaining. We removed hybrid species and very rare species (i.e.,450

species that appeared less than ten times in the whole dataset), which resulted in 29,836,079 observations remaining. Vegetation451

plots that lost more than 25% of their taxa or their most abundant taxon after the species names matching were removed from452

the dataset, to ensure that the remaining plots still provided reliable representations of vegetation patterns (which resulted in the453

final number of 29,149,022 observations remaining). Finally, vegetation plots belonging to very rare habitat types (i.e., habitat454

types that appeared less than ten times in the whole dataset) were considered unlabeled data and added to the fill-mask dataset.455

The set of labeled vegetation plots was then strategically split. Indeed, to avoid overfitting, ideally part of the available456

labeled data must be held out as a test set. However, the quantity of available full lists of plant species with estimates of457

cover-abundance of each species and habitat type assignment is not very high (i.e., less than 1M vegetation plots for all of458

Europe, a relatively low number compared to the vast amount of biodiversity data available). Partitioning the available data into459

a training set and a test set would reduce the number of training samples to a level too low for effective model training. As a460

result, it is possible to instead used k-fold cross-validation (CV)103 to split the dataset into k subsets. Then, for each of the splits,461

the model can be trained using k−1 of the subsets for training and the latter one for validation. However, cross-validation462

scores for the classification of vegetation plots can be biased if the data is randomly split, because they are commonly spatially463

autocorrelated (spatially closer data points have similar values). One strategy to reduce the bias is splitting data along spatial464

blocks104. This procedure avoids fitting structural patterns and allows the separation of near-duplicates. Such vegetation plots465

differ from each other in a very small portion of species (e.g., if they are close in space, two vegetation plots may exhibit466

identical plant composition but feature species with slightly contrasting abundances). The data set was thus first split into467

spatial blocks of 6 arc-minutes (0.1 degree on the World Geodetic System 1984, or WGS 84, spheroid). Then, the blocks were468

split into folds. Since the geographic distribution of vegetation plots across Europe is unequal, each block can have a different469

number of data points. The folds were thus balanced to have approximately equal number of plots instead of assigning the same470

number of blocks to each fold (which could have led to folds with very different numbers of data points). This process was471

facilitated by the use of the research software Verde105.472

With over 1.4M vegetation plots, 29M observations and 14K species, the dataset used in this paper is one of the most473

extensive datasets of vegetation plots ever analysed106. The entire description of the dataset can be found in Supplementary474

Table S2, and a visualization of the data can be found in Supplementary Figure S32. An overview of the long tail distribution of475

species (i.e., there is a strong class imbalance, meaning that a few species are present in many of the vegetation plots) can be476

found in Supplementary Figure S14, and more taxonomic information of the species (e.g., class, order, and family), mostly477

vascular plants with some bryophytes and lichens, can be found in Supplementary Table S16.478

The EUNIS habitat types107 are referred by their codes instead of their names, as they better reflect the classification479

hierarchy. The coding system is structured so that each broad habitat group is represented by one letter (except the broad habitat480

group Littoral biogenic habitats, which is designated by the code MA2). Then, a new alphanumeric character is added for each481

subsequent level. For instance, the habitat type Mediterranean, Macaronesian and Black Sea shifting coastal dune is identified482

by the code N14, indicating its belonging to the habitat group N1 (i.e., Coastal dunes and sandy shores), and more generally to483

the broad habitat group N (i.e., Coastal habitats). The entire list of the 227 habitat types used in this work can be found in484

Supplementary Table S24, but to exemplify the habitat types included, we list eight broad habitat groups used in this paper485

below:486

• Littoral biogenic habitats (code: MA2) - 11 habitat types belonging to littoral habitats formed by animals such as worms487

and mussels or plants (salt marshes)488

• Coastal habitats (code: N) - 25 habitat types belonging to habitats above spring high tide limit (or above mean water489

level in non-tidal waters) occupying coastal features and characterised by their proximity to the sea, including coastal490
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dunes and wooded coastal dunes, beaches and cliffs491

• Wetlands (code: Q) - 17 habitat types belonging to wetlands, with the water table at or above ground level for at least492

half of the year, dominated by herbaceous or ericoid vegetation493

• Grasslands and lands dominated by forbs, mosses or lichens (code: R) - 52 habitat types belonging to non-coastal land494

which is dry or only seasonally wet (with the water table at or above ground level for less than half of the year) with495

greater than 30% vegetation cover496

• Heathlands, scrub and tundra (code: S) - 42 habitat types belonging to non-coastal land which is dry or only seasonally497

inundated (with the water table at or above ground level for less than half of the year) usually with greater than 30%498

vegetation cover and with the development of soil499

• Forests and other wooded land (code: T) - 45 habitat types belonging to land where the dominant vegetation is, or was500

until very recently, trees with a canopy cover of at least 10%501

• Inland habitats with no or little soil and mostly with sparse vegetation (code: U) - 23 habitat types belonging to502

non-coastal habitats on substrates with no or little development of soil, mostly with less than 30% vegetation cover which503

are dry or only seasonally wet (with the water table at or above ground level for less than half of the year)504

• Vegetated man-made habitats (code: V) - 12 habitat types belonging to anthropogenic habitats which are dominated by505

vegetation and usually subject to regular management but also arising from recent abandonment of previously cultivated506

ground507

The final dataset created solely for the fill-mask task, i.e., fill-mask dataset, contained a total of 572 231 vegetation plots508

covering 14 069 different species. This dataset of 10 853 856 species observations (on average 19 species per plot) was only509

used for fine-tuning the masked language model, as each sample was unlabeled (the vegetation plots in this set were not510

classified to a habitat type). Each sample was used for the fill-mask task during each split in the training set, along with around511

90% of the text classification dataset.512

The text classification dataset, which was created both for the fill-mask task and the text classification task, contained a total513

of 850 933 vegetation plots covering 13 727 different species. This dataset of 18 295 166 species observations (on average514

around 22 species per plot) was used for fine-tuning the masked language model and for training the classifier head (i.e., the515

module added on top of the masked language model to transform its outputs into predictions for assigning habitat types to516

vegetation plots), as each sample was labeled (the vegetation plots in this set were classified to a habitat type). Each sample was517

used nine times in the training set and once in the test set.518

Pl@nBERT fill-mask model training519

Every plant species has specific environmental preferences that shape its presence. Therefore, the task of masking some520

of the species in a vegetation plot and predicting which species should replace those masks can help get a good contextual521

understanding of an entire ecosystem. This process is known as fill-mask. A detailed description of the hardware used to train522

the models can be found in Supplementary Text S3.523

Pl@ntBERT is based on the vanilla Transformer model BERT46. Hence, to predict a masked species in a vegetation plot,524

the model can consider (i.e., focus on and process information using the attention mechanism in the Transformer architecture)525

all species bidirectionally. This means the model, when looking at a specific species, has full access to the species on the526

left (i.e., more abundant species) and right (i.e., less abundant species). The two original BERT models (i.e., base and large)527

were leveraged for this study. BERT-base has 12 Transformer layers (i.e., Transformer blocks) and 110M parameters (i.e.,528

number of learnable variables) and BERT-large has 24 Transformer layers and 340M parameters. A detailed description of the529

architecture of the two sizes can be found in Supplementary Table S1. Moreover, the uncased version of BERT was leveraged to530

train Pl@ntBERT. This version does not distinguish between “hedera” and “Hedera”. Hence, as all outputs from Pl@ntBERT531

would be in lowercase, all inputs (abundance-ordered plant species sequences) were also lowercased to ensure consistency. For532

these two reasons, each sentence fed into the model was formed by listing all the species by descending abundance order, in533

lowercase, and separated by commas. In case of species having the same cover (which is frequent as most EVA data come from534

ordinal scales with a few steps only), they were randomly ordered.535

For many NLP applications involving Transformer models, it is possible to simply take a pre-trained model and fine-tune it536

directly on some data for the task at hand. Provided that the dataset used for pre-training is not too different from the dataset537

used for fine-tuning, transfer learning will usually produce good results. The predictions depend on the dataset the model was538

trained on, since it learns to pick up the statistical patterns present in the data. However, our dataset contains binomial names539

(i.e., the scientific names given to species and used in biological classification, which consist of a genus name followed by a540
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species epithet). Because it has been pre-trained on the English Wikipedia and BookCorpus datasets, the predictions of the541

vanilla Transformer model BERT for the masked tokens will reflect these domains. BERT will typically treat the species names542

in the dataset as rare tokens, and the resulting performance will be less than satisfactory. By fine-tuning the language model on543

in-domain data, we can boost the performance of the downstream task108. This process of fine-tuning a pre-trained language544

model on in-domain data is called domain adaptation. Vegetation-plot records from EVA that were not assigned to a habitat545

type were used for this task. The sentences were created by ordering each species within a plot in their descending order of546

abundance, separating them by commas. Two different ways were used to tokenize (i.e., prepare the inputs for the models) the547

names of the species:548

1. the “term” way: a species name is divided into two tokens, one for the genus name and one for the species epithet.549

2. the “species” way: a whole binomial name is equivalent to a token.550

More information about the versions of Pl@ntBERT can be found in Supplementary Table S7. For each approach, two551

model sizes were leveraged: base and large.552

Unlike other NLP tasks, such as token classification or question answering, where a labeled dataset to train on is given,553

there is not any explicit labels in masked language modeling. A good language model is one that assigns high probabilities to554

sentences that are grammatically correct, and low probabilities to nonsense sentences. Assuming our test dataset consists of555

sentences that are coherent plant assemblages, then one way to measure the quality of our language model is to calculate the556

probabilities it assigns to the masked species in all the sequences of the test set. High probabilities indicate that the model is not557

“surprised” or “perplexed” by the unseen examples (i.e., describing the model’s uncertainty or difficulty in predicting masked558

elements, hence reflecting how well it has learned the underlying structure of the data), and suggests it has learned the basic559

patterns of grammar in the language (in the case of Pl@ntBERT, the language being “floristic composition”). As a result, the560

perplexity, which is defined as the exponential of the cross-entropy loss, is one of the most common metrics to measure the561

performance of language models (the smaller its value, the better its performance). It was used in our experiments to evaluate562

the model in addition to the species masking accuracy.563

Except for commas, the classify tokens [CLS], which represent entire input sequences, and the separate tokens [SEP], which564

mark the separation between different input sequences), 15% of the tokens were “masked” during the experiments. These565

tokens consisted of full species names in the case of Pl@ntBERT-species and of genus names or species epithets in the case566

of Pl@ntBERT-term. We followed the same procedure used in the original BERT paper46: each selected token was replaced567

by (i) the [MASK] token 80% of the time, (ii) a random species 10% of the time, or (iii) the same species 10% of the time.568

Each model was trained for five epochs (i.e., five complete pass of the training dataset through the model). This process was569

facilitated by the use of the deep learning package Pytorch109 and the open-source library HuggingFace110.570

To compare how Pl@ntBERT models species assemblages compared to traditional approaches, we also implemented three571

alternative baseline methods solely based on species co-occurrence information. The first one is a version of Pl@ntBERT572

for which species are given as input in random order rather than abundance-ordered. This makes it possible to remove the573

information linked to the order of species so that most of the syntax rules cannot be learned anymore apart from co-occurrence574

patterns. The second baseline method is a naive Bayes predictor based on the species co-occurrence matrix. Ten different575

co-occurrence matrices were built, each time leveraging all the dataset minus one fold (to always keep the ground truth hidden).576

As a result, each matrix indicates how many times species of each pair co-occur in the same vegetation plots in the nine training577

folds. From the co-occurrence matrix, we can derive the probability of each species conditionally to an observed species578

assemblage. More details about how this naive Bayes predictor is constructed can be found in Supplementary Equation S25.579

The other baseline method is a neural network optimizing the log-loss function using stochastic gradient descent111. It was580

trained on incomplete species assemblages (i.e., for every vegetation plot of the training set, a species was randomly masked581

and the goal of the model was to retrieve it). More details about how the multilayer perceptron is implemented can be found in582

Supplementary Table S21.583

Identifying habitat types584

The classification of vegetation provides a useful way of summarizing our knowledge of vegetation patterns. Therefore, the task585

of assigning a habitat type to sentences describing floristic compositions serves to describe many facets of ecological processes.586

This process is called text classification.587

Pl@ntBERT is based on the fine-tuned version of BERT, meaning it has already adapted its weights to predict species that588

are more strongly associated with the plants from the sentence. It provides a better foundation for learning task-specific models,589

such as a text classification model. To create a state-of-the-art model for vegetation classification, we added one additional590

output layer (i.e., a fully connected layer that matched the number of habitat types) on top of the pooled output.591

Vegetation-plot records from EVA that were assigned to a habitat type were used for this task. The habitat labels were592

generated using the expert system EUNIS-ESy version v2021-06-0160 directly by the coordinators of the EVA database using593
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the JUICE program112. This means that using the EUNIS-ESy to identify the habitat types of the raw data from EVA (without594

the pre-processing steps such as harmonizing the taxon names) should lead to an accuracy of 100%. Each model was trained595

for five epochs.596

To evaluate the classification performance, we computed accuracy, precision, recall, and F1-score on the test set. Given the597

class imbalance in habitat labels (e.g., the habitat type R22, i.e., Low and medium altitude hay meadow, is present 69,533 times598

in the text classification dataset, and the habitat type U35, i.e., Boreal and arctic base-rich inland cliff, is present 12 times in the599

text classification dataset), the F1-score was particularly useful in assessing how well the model performed across different600

habitat types. We also compared Pl@ntBERT’s performance against a standard BERT model trained from scratch on the same601

dataset to assess the benefits of domain adaptation. Finally, we compared the results with EUNIS-ESy and hdm-framework,602

respectively a classification expert system and a deep-learning framework.603

Code availability604

The generic, free, and open-source framework that supports the findings of this study is available in GitHub at https:605

//github.com/cesar-leblanc/plantbert. See Figure 5 for an overview of the list of tasks that Pl@ntBERT can606

achieve.607

Pl@ntBERT

Controls that the 
framework is correctly 

installed

Cures a database of 
vegetation plots and 

creates input data

Learns to pick up the 
statistical patterns 
present in the data

Learns to assign an 
EUNIS habitat type to 

vegetation plots

Predicts the habitat and 
missing species of new 
unseen vegetation plots

1. Check 4. Classification3. Masking 5. Inference2. Dataset

Figure 5. Overview of the framework. The panels display the sequence of tasks performed during each of the five main stages
(installation check, dataset curation, masking training, classification training, and outcomes prediction).
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